Microsoft Bets it’s Future on a Reprogrammable Computer Chip

It was December 2012, and Doug Burger was standing in front of Steve Ballmer, trying to predict the future.

Ballmer, the big, bald, boisterous CEO of Microsoft, sat in the lecture room on the ground floor of Building 99, home base for the company’s blue-sky R&D lab just outside Seattle. The tables curved around the outside of the room in a U-shape, and Ballmer was surrounded by his top lieutenants, his laptop open. Burger, a computer chip researcher who had joined the company four years earlier, was pitching a new idea to the execs. He called it Project Catapult.

The tech world, Burger explained, was moving into a new orbit. In the future, a few giant Internet companies would operate a few giant Internet services so complex and so different from what came before that these companies would have to build a whole new architecture to run them. They would create not just the software driving these services, but the hardware, including servers and networking gear. Project Catapult would equip all of Microsoft’s servers—millions of them—with specialized chips that the company could reprogram for particular tasks.

But before Burger could even get to the part about the chips, Ballmer looked up from his laptop. When he visited Microsoft Research, Ballmer said, he expected updates on R&D, not a strategy briefing. “He just started grilling me,” Burger says. Microsoft had spent 40 years building PC software like Windows, Word, and Excel. It was only just finding its feet on the Internet. And it certainly didn’t have the tools and the engineers needed to program computer chips—a task that’s difficult, time consuming, expensive, and kind of weird. Microsoft programming computer chips was like Coca Cola making shark fin soup.

wired_microsoft_0401-1-1024x819

The current incarnation of Project Catapult ( Photo: Clayton Cotterell, for wire)

Burger—trim, only slightly bald, and calmly analytical, like so many good engineers—pushed back. He told Ballmer that companies like Google and Amazon were already moving in this direction. He said the world’s hardware makers wouldn’t provide what Microsoft needed to run its online services. He said that Microsoft would fall behind if it didn’t build its own hardware. Ballmer wasn’t buying it. But after awhile, another voice joined the discussion. This was Qi Lu, who runs Bing, Microsoft’s search engine. Lu’s team had been talking to Burger about reprogrammable computer chips for almost two years. Project Catapult was more than possible, Lu said: His team had already started.

Today, the programmable chips that Burger and Lu believed would transform the world—called field programmable gate arrays—are here. FPGAs already underpin Bing, and in the coming weeks, they will drive new search algorithms based on deep neural networks—artificial intelligence modeled on the structure of the human brain—executing this AI several orders of magnitude faster than ordinary chips could. As in, 23 milliseconds instead of four seconds of nothing on your screen. FPGAs also drive Azure, the company’s cloud computing service. And in the coming years, almost every new Microsoft server will include an FPGA. That’s millions of machines across the globe. “This gives us massive capacity and enormous flexibility, and the economics work,” Burger says. “This is now Microsoft’s standard, worldwide architecture.”

This isn’t just Bing playing catch-up with Google. Project Catapult signals a change in how global systems will operate in the future. From Amazon in the US to Baidu in China, all the Internet giants are supplementing their standard server chips—central processing units, or CPUs—with alternative silicon that can keep pace with the rapid changes in AI. Microsoft now spends between $5 and $6 billion a year for the hardware needed to run its online empire. So this kind of work is “no longer just research,” says Satya Nadella, who took over as Microsoft’s CEO in 2014. “It’s an essential priority.” That’s what Burger was trying to explain in Building 99. And it’s what drove him and his team to overcome years of setbacks, redesigns, and institutional entropy to deliver a new kind of global supercomputer.

A Brand New, Very Old Kind of Computer Chip

In December of 2010, Microsoft researcher Andrew Putnam had left Seattle for the holidays and returned home to Colorado Springs. Two days before Christmas, he still hadn’t started shopping. As he drove to the mall, his phone rang. It was Burger, his boss. Burger was going to meet with Bing execs right after the holiday, and he needed a design for hardware that could run Bing’s machine learning algorithms on FPGAs.

Putnam pulled into the nearest Starbucks and drew up the plans. It took him about five hours, and he still had time for shopping.

Burger, 47, and Putnam, 39, are both former academics. Burger spent nine years as a professor of computer science at the University of Texas, Austin, where he specialized in microprocessors and designed a new kind of chip called EDGE. Putnam had worked for five years as a researcher at the University of Washington, where he experimented with FPGAs, programmable chips that had been around for decades but were mostly used as a way of prototyping other processors. Burger brought Putnam to Microsoft in 2009, where they started exploring the idea that these chips could actually accelerate online services.

wired_microsoft_0330-crop1-768x1024

 

Read More: https://www.wired.com/2016/09/microsoft-bets-future-chip-reprogram-fly/

 

 

 

 




Leave a Reply

Your email address will not be published. Required fields are marked *